Biomarkers of pollution: an early warning system

on

By: Dana Sackett, PhD

The harm caused by toxic pollutants starts by changing the internal chemistry of an organism (chemicals in living organisms are called biochemicals).  These initial changes can cascade over time, causing damage at the cellular, tissue, organ, individual, population, and ultimately ecosystem levels.  Because pollutant-driven biochemical alterations precede larger population and ecosystem harm, monitoring biochemical changes can serve as an effective early warning that pollution has begun to impact an environment.

Like falling dominoes, any ecosystem or population level damage caused by pollution began with biochemical changes in individual organisms.  These initial biochemical changes represent the first push of a domino and can be measured and used as an early warning that a toxic chemical has started to cause harm, allowing us to intervene before that harm becomes widespread and potentially irreversible. Sourc

When biochemical changes are measurable and indicate a substance is adversely affecting an organism, they are called biomarkers. You may have heard this term in a medical setting because medical doctors will often take a blood or tissue sample to test for certain biomarkers (chemical and cellular changes) that indicate a particular disease or substance may be causing your body harm. Using biomarkers collected from aquatic ecosystems can help identify and address a pollution problem at an early stage, preventing extensive and potentially irreversible ecosystem damage, and the cost associated with cleaning it up.  A cost that can be expensive economically (through lost revenue and clean-up expenses), socially (such as impacts on public health and housing markets), and environmentally (through the loss of essential ecosystem services like nutrient recycling, food resources, clean water, and others).  Fish and mussel biomarkers in particular are important tools to assess contaminant risk, water quality, ecosystem health, and identity pollutant-caused harm before it becomes widespread.

The cost of cleaning-up pollution after it has reached the point of causing widespread ecosystem harm is expensive and extensive. Source

One biomarker, metallothionein, is a natural protein common in nearly all living things.  Whether in a tiny ocean fish or a person, this protein has the same purpose: to sequester excessive metals and prevent them from harming the cell. While normally at low levels, metallothionein will increase in the tissues of an organism when exposed to excessive metals. Thus, seeing an increase in metallothionein in the tissues of a fish would indicate that fish was being exposed to metals pollution.

The cost of cleaning-up pollution after it has reached the point of causing widespread ecosystem harm is expensive and extensive. Source

Biomarkers can also indicate if a toxic chemical present in the environment is causing injury. For instance, while a scientist may find high concentrations of metals in water, those metals may be bound to particles and unavailable to be taken up by organisms. If that were the case, metallothionein would remain low in the tissues of those organisms, indicating that their bodies were not responding to or being harmed by the metals.  

Biomarkers of fish DNA damage from a stream impacted by metals pollution (I for impacted) versus a control site (C for control). Source: Bae et al. 2020

Biomarkers can also provide different types of information depending on their function in an organism.  Metallothionein detoxifies metals and can determine if organisms are being exposed to that specific class of pollutants.  Other biomarkers can be specific to different types of cellular stress (described here to mean the chemical changes that cells undergo in response to environmental stressors like extreme heat or toxicants, but not emotional stress). Two specific stress proteins called stress70 and cpn60 are stress biomarkers. Their job often includes recognizing other damaged proteins and refolding them into their proper shape, essentially fixing them.  While these stress proteins are typically kept at relatively low concentrations, they will increase when an organism is exposed to a toxic chemical that causes protein damage.

Fish confined in water with metal and pesticide contaminant runoff compared to fish confined to an area without contaminant runoff.  Various biomarkers identified the biochemical changes and eventual tissue damage that occurred to fish confined in the contaminated site.  The authors conclude that these biomarkers are an important tool for monitoring aquatic ecosystem health. Source: Vieira et al. 2019.

Several detoxifying enzymes that help to break down harmful pollutant-induced free radicals can also serve as biomarkers. For instance, cells exposed to a pollutant that causes excessive free radicals will mount a defense against those free radicals by increasing the amount of detoxifying enzymes.  Thus, measuring this increase can be used to identify that an organism is being exposed to and affected by a harmful pollutant. Other biomarkers can signify DNA, cell, or reproductive damage directly. Scientists have even noted that the pattern and concentration of different biomarkers in comparison to each other can be used to identify the specific contaminant responsible for the biochemical changes.  This is known as stress protein fingerprinting. Another method is the integrated biomarker response index (known as IBR); a method that can combine and summarize multiple biomarker results into a single ‘stress’ index.  

The robustness and weaknesses of the use of fish biomarkers in the evaluation of water pollution. The choice of which biomarkers to use is frequently based on their robustness (e.g., reliability, environmental relevance, and repeatability). Biomarkers responses, however, might be altered by variables other than the presence of contaminants in the environment. Source: Parente and Hauser-Davis 2013.

While biomarkers can be extremely useful, there are limitations. One major limitation is that some toxic exposures can cause biochemical changes that resolve naturally, never leading to any further harm.  Another is that some natural processes can cause certain biomarkers to change, even in the absence of a pollutant.  For this reason, if a biomarker is to be useful in preventing ecological harm, it must be strongly linked to the pollutants responsible for those changes, and seen to lead to higher-level ecologically-relevant damage.  

Similar biomarker responses activated in different species exposed to titanium dioxide nanoparticles.  Source: Bobori et al. 2020.

Valuable biomarkers signify that a pollutant causes specific measurable biochemical changes that can lead to individual, population, and ultimately ecosystem harm.  As identifiable and measurable metrics, biomarkers can provide an invaluable early warning system that society can use to prevent widespread damage.    

References and other reading material:

Bae D-Y, Atique U, Yoon J, Lim B, An K. 2020. Ecological risk assessment of urban streams using fish biomarkers of DNA damaged physiological responses. Polish Journal of Environmental Studies 29:1077-1086.

Ballesteros ML, Rivetti NG, Morillo DO, Bertrand L, Ame MV, Bistoni MA. 2017. Multi-biomarker responses in fish (Jenynsia multidentate) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Science of the Total Environment 595: 711-722.

Bobori D, Dimitriadi A, Karasiali S, Tsoumaki-Tsouroufli P, Mastora M, Kastrinaki G, Feidantsis K, Printzi A, Koumoundouros G,  Kaloyianni M. 2020. Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure. Environmental International 138:105611.

Hemmadi V. 2017. A critical review on integrating multiple fish biomarkers as indicator of heavy metals contamination in aquatic ecosystem. International Journal of Bioassays 6.9:5494-5506.

Newman MC. 2020. Fundamentals of Ecotoxicology, The Science of Pollution. Fifth Edition. CRC Press. Boca Raton, FL.

Parente TEM, Hauser-Davis RA. 2013. The use of fish biomarkers in the evaluation of water pollution. In: Pollution and Fish Health in Tropical Ecosystems. Eds: de Almeida EA, de Oliveira Ribeiro CA. CRC Press. 164-181p.

Santana MS, Sandini-Neto L, Neto FF, Ribeiro CAO, Domenico MD, Prodocimo MM. 2018. Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): systematic review and meta-analysis. Environmental Pollution 242:449-461.

van der Oost R, Beyer J, Vermeulen NPE. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13: 57-149.

Vierira CED, Costa PG, Caldas SS, Tesser ME, Risso WE, Escarrone ALV, Primel EG, Bianchini A, Martinez BdR. 2019. An integrated approach in subtropical agro-ecosystems: active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Science of the Total Environment 666:508-524.

Vinodhini R, Narayanan M. 2009. Biochemical changes of antioxidant enzymes in common carp (Cyprinus carpio L.) after heavy metal exposure. Turk. J. Vet. Anim. Sci. 33:273-278.

Yuan M, Wang Y, Zhang X, Hu S, Tang X. 2017. Integrated biomarker response index used in laboratory exposure of the mussel Mytilus edulis to water accommodated fractions of crude oil. Advances in Materials, Machinery, Electronics I AIP Conf. Proc. 1820, 030007-1–030007-9. doi: 10.1063/1.4977264

2 Comments Add yours

  1. Jason C Seitz says:

    I wonder what the costs of analyzing for biomarkers are compared to analyzing for the metals and other contaminants in tissues? Also, if a given biomarker is analyzed and determined to be high relative to the average concentration in the tissue of a given taxon, would analysis of contaminant concentrations in tissue be the next step or would the biomarker concentration data alone suffice to determine what contaminant(s) is/are causing the effects? Thanks!

    1. The Fisheries Blog says:

      Those are great questions and the answers are that it depends. Some metals and organic contaminant tests can be very expensive (highest I have seen is $350 per sample). There is also the issue that you will only find what you test for. For instance, if you test for PCBs and do not find high levels, does not mean there aren’t other contaminants present that could be having an effect. Biomarker tests that I have explored are often less than or about the same as most tissue pollutant tests. However, I have not tried all the biomarker tests so there may be some that are expensive that I have not yet encountered. One of the benefits of biomarkers is that you receive information on whether a or a mixture of pollutants are having an effect and how it is having an effect early on. This is especially useful in situations where numerous sources of contaminants are present and it would be impossible to test for all of them. Therefore, if a biomarker is seen to be high, the next best step would be to investigate the sources of contaminants to the area. Agriculture, industrial, mining runoff, and determine the most likely culprits that could be causing the harm. Then test for those most likely culprits. In some cases, the harm could be caused by an emerging contaminant that we don’t have a way to quantity yet (I am looking at you new versions of PFAS). There are also instances when a high contaminant concentration can be measured but it has little to no impact on the organism harboring the pollutant, and others where a very small tissue concentration of a pollutant can have adverse sublethal effects that biomarkers would identify.

      However, biomarker tests alone (unless there is specific data identifying a stress biomarker fingerprint to a specific contaminant) cannot always identify a single pollutant culprit. But in the environment most pollution comes in groups or mixtures (e.g. mercury, arsenic, and other metals are often released together) and that is where these biomarkers can be really useful.

Please leave a thought provoking reply. We reserve the right to remove comments deemed inappropriate.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.